
A Practical Stochastic Algorithm for Rendering Mirror-Like Flakes

Asen Atanasov Vladimir Koylazov
Chaos Group∗

Figure 1: A) A metal plate with our flakes material. B) A Beetle toy with diffuse base layer, stochastic flakes middle layer, and reflective coat.
Flakes use triplanar mapping and have colors with random hue in HSL color space. C) Sparkling snow with sub-surface scattering base layer
and stochastic flakes coat material. The model parameters (N,αGGX , γ) for A), B), and C) are (16× 107, 0.04, 1◦), (8× 107, 0.09, 0.3◦),
and (108, 0.25, 0.4◦) respectively. B) and C) have ray-traced depth of field and slight post-process lens effects.

Abstract

Materials, such as snow, sand, metallic paints, rough plastics, and
metals, often exhibit small-scale phenomena observed as bright
sparkling or glittering surface features. These features become
more pronounced under narrow-angle illumination and vary based
on the orientation of the surface with respect to the viewer and
light sources. Microfacet-based surface models, composed of a
large finite number of microscopic mirror-like flakes, can mimic
this effect. An associated microfacet BRDF and a memory-efficient
stochastic algorithm are explored in [Jakob et al. 2014]. We present
a new stochastic algorithm that inherits the good properties of the
original algorithm, but does not require any precomputation; imple-
ments optimal importance sampling which is extended to efficiently
sample wide and heavy-tailed microfacet distributions (i.e. GGX),
and offers better overall performance. In addition, a triplanar map-
ping technique is employed to handle geometry without texture co-
ordinates. The algorithm is both practical and easier to implement.

Keywords: Stochastic algorithm, microfacet BRDF, importance
sampling, sparkling snow, metallic paint

Concepts: •Computing methodologies → Rendering; Re-
flectance modeling;

1 Introduction

Microfacet theory idealizes surfaces as composed of infinitely many
microscopic facets, described by two statistical measures - the
microfacet distribution D(x, h) and the shadowing-masking func-
tion G(i, o, h). The related microfacet BRDF is fr(x, i, o) =

1
4(i·n)(o·n)

F (i · h)D(x, h)G(i, o, h), where F is the Fresnel term,
x - the shading point, i - direction from which light is incident, o -

∗e-mail: {asen.atanasov,vlado}@chaosgroup.com
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH ’16, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4282-7/16/07
DOI: http://dx.doi.org/10.1145/2897839.2927391

direction in which light is reflected, h = i+o
||i+o|| , and n - the surface

normal [Walter et al. 2007]. Converged renders of such surfaces
appear perfectly smooth. However, the visible microstructure, es-
pecially observed in motion or change of illumination, gives more
realism. Usually, the rendering of small specular surface features is
achieved through normals maps, but as the features become much
smaller than a pixel, resolving the correct pixel value using Monte
Carlo sampling becomes inefficient.

2 Previous work

The memory-efficient rendering of large finite number of flakes is
investigated in [Jakob et al. 2014]. N flakes are uniformly dis-
tributed in the unit texture space and their normals follow a micro-
facet distribution on the unit hemisphere. The multiscale BRDF
is defined as the microfacet BRDF, averaged over a finite surface
area A, containing the shading point x and a finite solid angle Ω
around the incident direction i. In the implementation, A is a par-
allelogram approximation of the pixel footprint, defined by the ray
differentials [Idehy 1999], and Ω is a cone of radius γ, centered
at i. The continuous microfacet distribution D is substituted by a
discrete counterpart 4

a(A)σ(Ω)
(i · h)D̂, where D̂ is the fraction of

flakes which are contained in A and reflect o in Ω. The expres-
sion (i · h)D̂ is an approximation to D̃ = 1

N

∑
i · mj , where mj

are the normals of this fraction of flakes. A hierarchical traversal
of the texture-direction space, starting from the unit texture square
and the unit hemisphere, is performed to compute D̂. A key advan-
tage of the algorithm is that the flakes are not stored in memory, but
their counts are reproduced by a deterministically seeded stochastic
process during traversal. The result converges to a standard micro-
facet BRDF as N increases. This method has practical issues. To
build the data structure efficiently on average, it relies on statistics
collected during a full animation precomputation step. The impor-
tance sampling strategy does not sample the discrete integrand, but
samples from a different smooth distribution. Thus, it practically
fails to sample wide and heavy-tailed microfacet distributions.

3 Our approach

We present a new stochastic algorithm, based on [Jakob et al.
2014], which inherits the good properties and solves the issues
listed above. For a given shading point with a footprint A, we per-

http://dx.doi.org/10.1145/2897839.2927391

form one texture space query to locate the number of flakes in it
during which we explicitly generate the normals of the flakes and
collect data to calculate the lighting. A comparison between the
two algorithms is given in Table 1.

Texture query. We query the texture space with the footprint par-
allelogram A, using a quad-tree, stack-based, depth-first traver-
sal. The root of the tree is the unit texture square which has
the flakes count N and seed s used to initialize a pseudorandom
generator for this query. Each square node is split into 4 equal
nodes. Node-footprint intersections are performed to filter out the
nodes which do not overlap with the footprint. On each split op-
eration we distribute the node flakes count to its children using
normal approximation to multinomial distribution with probabili-
ties p = (1

4
, 1

4
, 1

4
, 1

4
) [Jakob et al. 2014]. Our query generator

combines four xorshift-based generators which share a 64-bit state.
During the traversal push operation, we use a different generator for
each child node and the state is stored on the stack. On the pop op-
eration, the generator state is restored. A node is a leaf if it has less
than K flakes, or the stack depth T is reached. For our implemen-
tation N < 231 and (K,T) = (16, 15) proved adequate. If a leaf
is entirely inside the footprint, then all of its flakes are processed.
Otherwise we generate random positions of the flakes inside the
leaf and process these flakes which belong to the footprint.

Reflection cache. During the query, we accumulate n footprint
flakes and generate their random normals mj , according to the de-
sired microfacet distribution, using the query generator. Then o is
reflected from each normal mj to get per-flake directions rj . These
directions represent n cones of radius γ from which light can be re-
flected along the outgoing direction o. Furthermore, we define per-
flake weights wj = mj · rj . We call the set of all n pairs (rj , wj)
reflection cache. For the microfacet distribution, we compute an
accurate approximation D̃ ≈ 1

N

∑
i·rj≥cos γ wj by checking how

many cached cones contain the incident light direction i.

A
0 2
1 1

3

K = 4

1

rj

mj

A

o

Figure 2: Four non-empty leaves (red) overlapping the footprint
(left). Partially overlapping leaves generate flakes positions and
check if they belong to the footprint (middle). Generated normals
mj for the three flakes and reflection cache directions rj (right).

Optimal importance sampling. Along with the reflection cache,
we construct a cumulative table with n + 1 elements c0 = 0,
cj = cj−1 + wj , j = 1, n. We pick a random cache direction
r, proportional to wj , by generating a uniform random number
ξ ∈ (0, cn) and binary searching the cumulative table with it. Then
we generate the BRDF direction i as a uniform random direction in
a cone of radius γ around r. The corresponding geometric prob-
ability is 1

π(1−cos γ)
, where π(1 − cos γ) is the solid angle of the

cone. Finally, the probability of generating i is p(i) = k
π(1−cos γ)cn

,
k =

∑
i·rj≥cos γ wj is the sum of the weights of the cached cones

which contain i and could have generated it proportionally to their
weights. We compute k as a by-product of the BRDF evaluation.

Distance blending. As the number of flakes within the footprint in-
creases, the material appearance conforms to the smooth microfacet
model and the calculations of our algorithm increase. Therefore,

Table 1: A comparison between Jakob et al. and our method for
N = 2 × 107 and distribution width α. Variance-based image
sampler with a fixed threshold is used to render 200 × 300 region
of the metal plate on Intel Core i7-980X, 3.33GHz, 6-core machine.

α 0.01 0.1 0.4
Jakob et al. (Beckmann, γ = 1◦) 19s 631s 1945s
Jakob et al. (Beckmann, γ = 5◦) 18s 49s 170s
Our method (Beckmann, γ = 1◦) 4s 8s 10s
Our method (Beckmann, γ = 5◦) 6s 8s 10s

Our method (GGX, γ = 1◦) 5s 9s 9s
Our method (GGX, γ = 5◦) 6s 9s 9s

we implement blending based on the expected number of flakes
per pixel footprint E[n] = N · a(A). We define blending range
[bmin, bmax]. For all footprints with expected number of flakes
E[n] ≤ bmin we compute only the discrete microfacet distribution;
for E[n] ≥ bmax we compute only the smooth microfacet distribu-
tion; for the case of bmin ≤ E[n] ≤ bmax we compute both and
linearly interpolate between them, using E[n] as an interpolation
parameter. Our default blending range is [500, 2000].

Colored flakes. Optionally, we generate a color table with a fixed
number of entries which is either spanning the hue parameter in
HSL space for a fixed saturation and lightness, or it is sampled from
a texture. Per-flake color is assigned by generating a random index
in this table. We use the same blending strategy, but we multiply
the smooth BRDF by the average color of the table. For importance
sampling we pick random cache direction proportional to the prod-
uct of the weights of the flakes wj and their color intensities. In our
implementation the table size is 64.

Triplanar mapping. In practice, texture coordinates are not always
available or have bad quality. Alternatively, our method works with
triplanar mapping. We transform the surface normal and the foot-
print, defined in world coordinates, into the local coordinates of the
shaded object. Then we project the footprint along the axis corre-
sponding to the maximal absolute component of the local normal.
Then we scale the resulting 2D footprint depending on the shaded
object size. We find the square with integer coordinates and size
1, to which the footprint belongs, and perform the texture query in
it. In order to avoid tiling, we generate the seed s of the root node
based on the square coordinates. If the footprint is at the boundary
of such squares, we query all of them.

Acknowledgements

We thank Stephen Parker, Rossen Dimov, Yordan Madzhunkov,
Simeon Balabanov, Kalina Panteleeva, Yavor Stoikov, Emanuele
Lecchi, Christopher Nichols and Rhys Dippie.

References

IDEHY, H. 1999. Tracing ray differentials. In Proceedings of
SIGGRAPH 99, ACM Press/Addison-Wesley Publishing Co.

JAKOB, W., HAAN, M., YAN, L.-Q., LAWRENCE, J., RA-
MAMOORTHI, R., AND MARSCHNER, S. 2014. Discrete
stochastic microfacet models. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2014) 33, 4.

WALTER, B., MARSCHNER, S., AND TORRANCE, K. 2007.
Microfacet models for refraction through rough surafaces. In
Proceedings of the 18th Eurographics Conference on Rendering
Techniques, 195–206.

